

Subject with Code: PROBABILITY AND COMPLEX VARIABLES (23HS0835)

Branches: ECE

Year & Sem: II-B. Tech & I-Sem

SIDDHARTH INSTITUTE OF ENGINEERING &TECHNOLOGY : PUTTUR

(AUTONOMOUS)

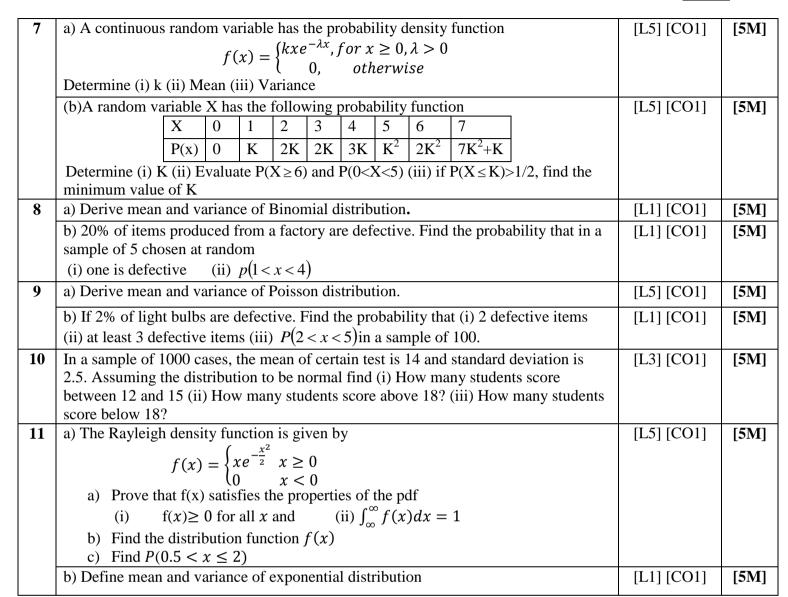
Siddharth Nagar, Narayanavanam Road – 517583

QUESTION BANK (DESCRIPTIVE)

Regulation: R23

<u>UNIT –I</u> PROBABILITY & RANDOM VARIABLE

1	a) State the axioms of probability	[L1] [CO1]	[2M]
	b) Define a random variable with suitable examples	[L1] [C01]	[2N]
	c) State Baye's theorem	[L1] [C01]	[2M]
	d) Define mean and variance of a probability distribution	[L1] [C01]	[2M]
	e) Write the density function of uniform distribution	[L2] [C01]	[2M]
	c) write the density function of dimonit distribution		
2	a) A class consists of 6 girls and 10 boys. If a committee of 3 is chosen at random	[L1] [CO1]	[5M]
	from the class. Find the Probability that (i) 3 boys are selected (ii) exactly 2 girls are		
	selected		
	b) If three coins are tossed. Find the probability of getting	[L1] [CO1]	[5M]
	(i) 3 heads (ii) 2 heads (iii) no heads.	[][]	[•]
2			[5]
3	a) Two cards are selected at random from 10 cards numbered 1 to 10. Find the probability that the sum is even if (i) The two cards are drawn together. (ii) The two	[L5] [CO1]	[5M]
	cards drawn one after other with replacement.		
		[L5] [CO1]	[5M]
	b) Determine (i) $P(B_A)$ (ii) $P(A_{B^C})$ if A and B are events with $P(A) = \frac{1}{2}$,		
	$P(B) = \frac{1}{4}, P(A \cup B) = \frac{1}{2}.$		
4	a) In a certain town 40% have brown hair, 25% have brown eyes and 15% have both	[L1] [CO1]	[5M]
	brown hair and brown eyes. A person is selected at random from the town.		
	i) If he has brown hair, what is the probability that he has brown eyes also.		
	ii) If he has brown eyes, determine the probability that he does not have brown hair?		
			[5]/[]
	b) The probability that students A,B,C,D solve the problem are $\frac{1}{3}$, $\frac{2}{5}$, $\frac{1}{5}$ and $\frac{1}{4}$	[L3] [CO1]	[5M]
	5 5 5 т		
	respectively if all of them try to solve the problem, what is the probability that the		
_	problem is solved.		[10N/[]
5	Two dice are thrown. Let A be the event that the sum of the points on the faces is 9. Let B be the event that at least one number is 6.	[L1] [CO1]	[10M]
	Find (i) $P(A \cap B)$ (ii) $P(A \cup B)$ (iii) $P(A^c \cup B^c)$ (iv) $P(A^c \cap B^c)$		
	(v) $P(A \cap B^c)$		[10N/[]
6	In a certain college 25% of boys and 10% of girls are studying mathematics.	[L1] [CO1]	[10M]
	The girls Constitute 60% of the student body.		
	(a) What is the probability that mathematics is being studied? (b) If a student is selected at random and is found to be studying mathematics, find		
	(b) If a student is selected at random and is found to be studying mathematics, find the probability that the student is a girl? (a) a boy		
	the probability that the student is a girl? (c) a boy	l	



<u>UNIT –II</u> OPERATIONS ON RANDOM VARIABLE

1	a) Define moments about origin and mean	[L1] [CO2]	[2M]
	b) Define variance	[L1] [CO2]	[2M]
	c) State Chebyshev's inequality	[L1] [CO2]	[2M]
	d) Explain interval conditioning	[L2] [CO2]	[2M]
	e) Explain statistical independence	[L2] [CO2]	[2M]
2	a) The number of customers who visit a car dealer show room on a certain day is a random variable with mean 18 and standard deviation 2.5. with what probability can it be asserted that there will be between 8 and 28 customers	[L5] [CO2]	[5M]
	be asserted that there will be between 8 and 28 customers		
	b) If \bar{x} is the number appearing on a die when it is thrown show that the Chebyshev's theorem gives $P(\bar{x}-\mu > 2.5) < 0.47$ while the actual probability is zero	[L5] [CO2]	[5M]
3	From the following data $r_{1} = 2.53 < 0.47$ while the actual probability is zero	[L5] [CO2]	[10M]
	X -2 -1 0 1 2 P(x) 0.1 0.4 0 0.2 0.1 To find(i) mean (iv) $E(7X \pm 8)$ (ii) variance (v) $E(4X \pm 6)^2$ (iii) E(3x \pm 4) (iv) $V(4X \pm 6)$		
4	The continuous density function of a random variable X is defined as $\int_{-\infty}^{\infty}$	[L1] [CO2]	[10M]
	$\left(\frac{x}{2}\right)$ $0 \le x \le 1$		
	$f(x) = \begin{cases} \frac{x}{2} & 0 \le x \le 1\\ \frac{1}{2} & 1 \le x \le 2\\ \frac{1}{2}(3-x) & 2 \le x \le 3 \end{cases}$		
	$\left(\frac{1}{2}(3-x)\right) \leq x \leq 3$		
	To find (i) mean (ii) mean square (iv) $E[X^3]$ (iv) variance		
5	For the Random variable X whose density function of continuous random variable X	[L1] [CO2]	[10M]
	$f(x) = \begin{cases} \frac{1}{b-a} & a \le x \le b\\ 0 & otherwise \end{cases}$		
	0 otherwise		
	(i) Find Moment generating function		
	(ii) Mean and variance		
			54.03.53
6	Find the first moment of exponential probability density function of continuous	[L1] [CO2]	[10M]
	random variable X given $(1 - (x-a))$		
	$f(x) = \begin{cases} \frac{1}{b}e^{-\left(\frac{x-a}{b}\right)} & x \ge a\\ 0 & x < a \end{cases}$		
	$\begin{bmatrix} b \\ 0 \end{bmatrix} x < a$		
	using characteristic function.		
7	a) Define moment generating function	[L5] [CO2]	[2M]
		[L5] [CO2]	[8M]
	b) find mean and variance of binomial distribution using mgf		
8	a) Define characteristic function	[L5] [CO2]	[2M]
	b) find mean and variance of poisson distribution using cf	[L5] [CO2]	[8M]
9	Given the function	[L1] [CO2]	[10M]
-			L
	$f(x,y) = \begin{cases} b(x+y)^2 & -2 < x < 2, -3 < y < 3\\ 0 & elsewhere \end{cases}$ (i)find a constant 'b' such that this is a valid density function		
	(1)find a constant 'b' such that this is a valid density function		
	(ii)determine the marginal density function $f(x)$ and $f(y)$		

Q.P. Code:23HS0835

10	Find (i	e following) P(X≤1, x<4, y≤4)	[L5] [CO2]	[10M]						
	Y	1								
	0	0	0	1/32	2/32	2/32	3/32			
	1	1/16	1/16	1/8	1/8	1/8	1/8	-		
	2	1/32	1/32	1/64	1/64	0	2/64			
11	Let X	and Y be j	[L5] [CO2]	[10M]						
	a)				ndependen	t	-	-		

R23

<u>UNIT –III</u> OPERATIONS ON MUTIPLE RANDOM VARIABLES

1		[1,1][000]	
1	a) Define joint characteristic function.	[L1] [CO3]	[2M]
	b)Define and explain conditional probability mass function.	[L1] [CO3]	[2M]
	c) The correlation coefficient of two random variable X and Y is -1/4 while their variances are 3 and 5. Find the covariance.	[L1] [CO4]	[2M]
	d) When random variables are called jointly Gaussian.	[L2] [CO4]	[2M]
	e) List some properties of Gaussian random variable.	[L2] [CO4]	[2]VI]
2	The joint probability function of two discrete random variable X and Y is given by	[L2] [C04] [L5] [C03]	[10M]
4	f(x, y) = cxy for $x = 1,2,3$ and $y = 1,2,3$	[L5] [C05]	
	and equals zero otherwise. Find		
	a) constant c d) $P(X \le 2)$		
	b) $P(x = 2, y = 3)$ e) $P(y < 2)$		
	c) $P(1 \le x \le 2, y \le 2)$ f) $P(x = 1)$ g) $P(y = 3)$		
3	X and Y are independent random variable each having density function of the form	[1,5] [CO2]	[10]
3		[L5] [CO3]	[10M]
	$f(u) = 2. e^{-2u} \text{ for } u \ge 0$		
	Find (a) $E(X + Y)$ (b) $E(X^2 + Y^2)$ (c) $E(XY)$		
	$\frac{1}{2} \ln \left(\left(a \right) L \left(x + 1 \right) \right) = \left(b \right) L \left(x + 1 \right) = \left(b \right) L \left(x + 1 \right)$		
4	The joint space for two random variable X and Y and corresponding probabilities are	[L1] [CO3]	[10M]
	shown in table. Find		
	(a) $F(x,y)$ (b)marginal distribution function of x and y		
	(c) find $P(0.5 < x < 1.5)$ (d) find $P(x \le 1, y \le 2)$ and		
	(e) find $P(1 < x \le 2, y \le 3)$		
	X, Y 1,1 2,2 3,3 4,4		
	P 0.05 0.35 0.45 0.15		
5	If the function	[L1] [CO3]	[10N/]
3			[10M]
	$f(x,y) = \begin{cases} be^{-2x} \cos\left(\frac{y}{2}\right) & 0 \le x \le 1\\ 0 & 0 \le y \le \pi \end{cases}$		
	$f(x,y) = \begin{cases} 0 & 0 \le y \le \pi \end{cases}$		
	0 elsewhere		
	Where 'b' is a positive constant is a valid joint density function, find 'b'		
6	The joint density function of the render verifields V and V is given as $f(x,y) = -$		[10N/[]
6	The joint density function of the random variables X and Y is given as $f(x, y) = $	[L1] [CO4]	[10M]
	8xy for $0 \le x \le 1$, $o \le y \le x$ Find (a) marginal density of x (b) marginal density of y		
	(c) conditional density of x (d) conditional density of y		
7	(x^2+y^2)	[L1] [CO4]	[10M]
	Given the function $f(x, y) = \begin{cases} \frac{x^2 + y^2}{8\pi}, x^2 + y^2 < b \end{cases}$	[][,]	r=
	(a)find the constant 'b' so that this is a valid joint density function		
	(b) find $p(0.5b < x^2 + y^2 < 0.8b)$		
			F4 03
8	The density function of two random variable X and Y is	[L1] [CO4]	[10M]
	$f(x, y) = 16.e^{-4(x+y)}$		
	Find the mean of the function		
	$g(X,Y) = 5$ for $0 < x \le \frac{1}{2}$; $0 < Y \le \frac{1}{2}$		
	$= -1$ for $\frac{1}{2} < X$ and for $\frac{1}{2} < y$		
	= 0 for all other X and Y		

Q.P. Code:23HS0835

9	Two ra	andom	variab	les X a	nd Y ha	ave me	ans 1 a	nd 2 re	spectiv	ely and	l variance 4 and	[L1] [CO4]	[10M]
	1 respe	ectivel	ariable W and V										
	are defined as												
		V= -2	X+2Y	; W=	X+3Y								
	Find th	ne											
	(a)	Mean	ns (b)va	ariance	(c) corr	relation	S						
	(d)	correl	lation c	coefficie	ent of V	/ and V	V						
10	Calcu	late the	e coeff	ïcient o	f variat	tion bet	ween Z	X and Y	from	the foll	owing data	[L5] [CO4]	[10M]
	Х	1	2	3	4	5	6	7	8	9			
	Y 9 8 10 12 11 13 14 16 15												
								-		-	_		
11	Let X	and Y	be the	randor	n varia	bles ha	ving jo	int den	sity fu	nction		[L5] [CO4]	[10M]
				f(x, y)					-				
					0		Otherw		2				
	Find (a	a) var()	X) (b)	var(Y)	$(C)\sigma_{xv}$	(d) <i>ρ</i>							
		, (/ \ /	~ /	, , , , , , , , , , , , , , , , , , ,								

R23

<u>UNIT –IV</u> <u>COMPLEX VARIABLE – DIFFERENTIATION</u>

1			[3]
	a) Define analytic function.	[L1] [CO5]	[2M]
	b) State Cauchy-Riemann (C-R) equations in cartesian coordinates.	[L1] [CO5]	[2M]
	c) Find where the function $w = \frac{1}{z}$ ceases to be analytic.	[L1] [CO5]	[2M]
	d) Define harmonic function.	[L1] [CO5]	[2M]
	e) Prove that $f(z) = \overline{z}$ is not an analytic at any point.	[L5] [CO5]	[2 M]
2	a) Show that z^2 is an analytic for all z.	[L2] [CO5]	[5M]
	b) Determine p such that the function	[L5] [CO5]	[5M]
	$f(z) = \frac{1}{2}log(x^2 + y^2) + i tan^{-1}\left(\frac{px}{y}\right)$ is an analytic function.		
3	a) Find whether $f(z) = sinxsiny - icosxcosy$ is an analytic or not.	[L1] [CO5]	[5M]
	b) Determine whether the function $f(z) = 2xy + i(x^2 - y^2)$ is analytic.	[L5] [CO5]	[5M]
4	a) Show that $u = e^{-x}(x \sin y - y \cos y)$ is harmonic function.	[L2] [CO5]	[5M]
	b) Show that $u = 2 \log(x^2 + y^2)$ is harmonic function.	[L2] [CO5]	[5M]
5	Verify that $u = x^2 - y^2 - y$ is harmonic in the whole complex plane and find a conjugate harmonic function <i>v</i> of <i>u</i> ?	[L4] [CO5]	[10M]
	Prove that, if $u = x^2 - y^2$: $v = \frac{-y}{x^2 + y^2}$ both u and v satisfy Laplace's equation, but $u + iv$ is not a analytic function	[L5] [CO5]	[10M]
7	but $u + iv$ is not a analytic function. Show that i) $\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} = 4 \frac{\partial^2}{\partial z \partial \bar{z}}$.	[L1] [CO5]	[10M]
	Show that i) $\frac{\partial x^2}{\partial x^2} + \frac{\partial y^2}{\partial z \partial \bar{z}}$. ii) $\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right) f(z) ^2 = 4 f'(z) ^2$ where $f(z)$ is an analytic function.		
8	Prove that the function $f(z)$ defined by	[L5] [CO5]	[10M]
	$f(z) = \frac{x^3(1+i)-y^3(1-i)}{x^2+y^2}$, $(z \neq 0)$ and $f(z) = 0$, $(z = 0)$ is continuous and the		
	Cauchy-Riemann equations are satisfied at origin.		
9	Find 'a' and 'b' if $f(z) = (x^2 - 2xy + ay^2) + i(bx^2 - y^2 + 2xy)$ is analytic.	[L1] [CO5]	[10M]
	Hence find $f(z)$ interms of z.		
10	a) Determine the analytic function whose real part is e ^x cosy.	[L5] [CO5]	[5M]
	b) Find the analytic function whose imaginary is $\frac{x-y}{x^2+y^2}$.	[L1] [CO5]	[5M]
11	a) Find the analytic function $f(z)$ interms of z whose real part is $x^3 - 3xy^2$.	[L1] [CO5]	[5M]
	b) Find the analytic function whose imaginary part is $e^{x}(x \sin y + y \cos y)$.	[L1] [CO5]	[5M]

<u>UNIT –V</u> <u>COMPLEX VARIABLE – INTEGRATION</u>

1	a) Define Line integral	[L1] [CO6]	[2M]
	b) State Cauchy's integral theorem.	[L1] [CO6]	[2M]
	c) State Cauchy Integral formula.	[L1] [CO6]	[2M]
	d) Expand e^z as Taylor's series in powers of (z-3).	[L2] [CO6]	[2M]
-	e) State Cauchy Residue theorem.	[L1] [CO6]	[2 M]
2	a) Evaluate $\int_{(0,0)}^{(1,3)} 3x^2 y dx + (x^3 - 3y^2) dy$ along the curve $y = 3x$.	[L5] [CO6]	[5M]
-	b) Evaluate $\int_0^{1+i} (x^2 - iy) dz$ along the path $y = x$.	[L5] [CO6]	[5M]
3	Evaluate $\int_0^{3+i} z^2 dz$, i) along the line $y = \frac{x}{3}$ ii) along the parabola $x = 3y^2$.	[L5] [CO6]	[10M]
4	Show that $\int_c (z+1)dz = 0$ where 'c' is the boundary of the square whose vertices at the points $z = 0, z = 1, z = 1 + i, z = i$.	[L1] [CO6]	[10M]
5	a) Evaluate $\int_c \frac{e^{2z}}{(z-1)(z-2)} dz$ where 'c' is the circle $ z = 3$.	[L5] [CO6]	[5M]
-	b) Evaluate $\int_c \frac{e^z}{(z-1)(z-4)} dz$ where 'c' is $ z = 2$.	[L5] [CO6]	[5M]
6	Evaluate $\int_c \frac{z-3}{z^2+2z+5} dz$ where 'c' is the circle i) $ z = 1$ ii) $ z+1-i = 2$	[L5] [CO6]	[10M]
7	a) Expand $f(z) = sinz$ in Taylor's expansion of in powers of $\left(z - \frac{\pi}{4}\right)$.	[L2] [CO6]	[5M]
	b) Expand $f(z) = \frac{1}{z^2 - z - 6}$ in Taylor's series about <i>i</i>) $z = -1$ <i>ii</i>) $z = 1$.	[L2] [CO6]	[5M]
8	a) Find the Laurent expansion of $\frac{1}{z^2-4z+3}$ for i) $1 < z < 3$ ii) $ z < 1$.	[L1] [CO6]	[5M]
-	b) Determine the poles of the function i) $\frac{z}{\cos z}$ ii) cotz.	[L5] [CO6]	[5M]
9	a) Find the poles of the function $f(z) = \frac{1}{(z+1)(z+3)}$ and residues at each poles.	[L1] [CO6]	[5M]
	b) Find the residue of $f(z) = \frac{z^2}{(z-1)^2(z+2)}$ at each pole.	[L1] [CO6]	[5M]
10	Evaluate $\oint_{c} \frac{4-3z}{z(z-1)(z-2)} dz$ where 'c' is circle $ z = \frac{3}{2}$ using residue theorem.	[L5] [CO6]	[10M]
11	a) Evaluate $\oint_c \frac{z-3}{z^2+2z+5} dz$ where 'c' is circle given by $ z+1+i = 2$ using Residue theorem.	[L5] [CO6]	[5M]
	b) Evaluate $\int_0^{2\pi} \frac{d\theta}{2+\cos\theta}$ using residue theorem	[L5] [CO6]	[5M]